3.9.64 \(\int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [864]

Optimal. Leaf size=116 \[ \frac {A b^2 \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{2 d \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

1/2*A*b^2*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(5/2)+b^2*B*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c
)^(3/2)+1/2*A*b^2*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {17, 2827, 3853, 3855, 3852, 8} \begin {gather*} \frac {A b^2 \sin (c+d x) \sqrt {b \cos (c+d x)}}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {A b^2 \sqrt {b \cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 d \sqrt {\cos (c+d x)}}+\frac {b^2 B \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(A*b^2*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(2*d*Sqrt[Cos[c + d*x]]) + (A*b^2*Sqrt[b*Cos[c + d*x]]*Sin[
c + d*x])/(2*d*Cos[c + d*x]^(5/2)) + (b^2*B*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx &=\frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int (A+B \cos (c+d x)) \sec ^3(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {\left (A b^2 \sqrt {b \cos (c+d x)}\right ) \int \sec ^3(c+d x) \, dx}{\sqrt {\cos (c+d x)}}+\frac {\left (b^2 B \sqrt {b \cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}}\\ &=\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {\left (A b^2 \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{2 \sqrt {\cos (c+d x)}}-\frac {\left (b^2 B \sqrt {b \cos (c+d x)}\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d \sqrt {\cos (c+d x)}}\\ &=\frac {A b^2 \tanh ^{-1}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{2 d \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {b^2 B \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.16, size = 65, normalized size = 0.56 \begin {gather*} \frac {(b \cos (c+d x))^{5/2} \left (A \tanh ^{-1}(\sin (c+d x)) \cos ^2(c+d x)+(A+2 B \cos (c+d x)) \sin (c+d x)\right )}{2 d \cos ^{\frac {9}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(A*ArcTanh[Sin[c + d*x]]*Cos[c + d*x]^2 + (A + 2*B*Cos[c + d*x])*Sin[c + d*x]))/(2*d*C
os[c + d*x]^(9/2))

________________________________________________________________________________________

Maple [A]
time = 0.24, size = 121, normalized size = 1.04

method result size
default \(-\frac {\left (A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (-\frac {-1+\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-A \left (\cos ^{2}\left (d x +c \right )\right ) \ln \left (\frac {1-\cos \left (d x +c \right )+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right )-2 B \sin \left (d x +c \right ) \cos \left (d x +c \right )-A \sin \left (d x +c \right )\right ) \left (b \cos \left (d x +c \right )\right )^{\frac {5}{2}}}{2 d \cos \left (d x +c \right )^{\frac {9}{2}}}\) \(121\)
risch \(-\frac {i b^{2} \sqrt {b \cos \left (d x +c \right )}\, \left (A \,{\mathrm e}^{3 i \left (d x +c \right )}-2 B \,{\mathrm e}^{2 i \left (d x +c \right )}-A \,{\mathrm e}^{i \left (d x +c \right )}-2 B \right )}{\sqrt {\cos \left (d x +c \right )}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {b^{2} \sqrt {b \cos \left (d x +c \right )}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 \sqrt {\cos \left (d x +c \right )}\, d}-\frac {b^{2} \sqrt {b \cos \left (d x +c \right )}\, A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 \sqrt {\cos \left (d x +c \right )}\, d}\) \(161\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(A*cos(d*x+c)^2*ln(-(-1+cos(d*x+c)+sin(d*x+c))/sin(d*x+c))-A*cos(d*x+c)^2*ln((1-cos(d*x+c)+sin(d*x+c))/
sin(d*x+c))-2*B*sin(d*x+c)*cos(d*x+c)-A*sin(d*x+c))*(b*cos(d*x+c))^(5/2)/cos(d*x+c)^(9/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 803 vs. \(2 (100) = 200\).
time = 0.67, size = 803, normalized size = 6.92 \begin {gather*} \frac {\frac {8 \, B b^{\frac {5}{2}} \sin \left (2 \, d x + 2 \, c\right )}{\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} - \frac {{\left (4 \, {\left (b^{2} \sin \left (4 \, d x + 4 \, c\right ) + 2 \, b^{2} \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - 4 \, {\left (b^{2} \sin \left (4 \, d x + 4 \, c\right ) + 2 \, b^{2} \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - {\left (b^{2} \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + b^{2} \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, b^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2} + 2 \, {\left (2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}\right )} \cos \left (4 \, d x + 4 \, c\right )\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) + {\left (b^{2} \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + b^{2} \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b^{2} \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, b^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2} + 2 \, {\left (2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}\right )} \cos \left (4 \, d x + 4 \, c\right )\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) - 4 \, {\left (b^{2} \cos \left (4 \, d x + 4 \, c\right ) + 2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 4 \, {\left (b^{2} \cos \left (4 \, d x + 4 \, c\right ) + 2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )\right )} A \sqrt {b}}{2 \, {\left (2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \cos \left (4 \, d x + 4 \, c\right ) + \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right ) + 1}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

1/4*(8*B*b^(5/2)*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) - (4*(b^2
*sin(4*d*x + 4*c) + 2*b^2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(b^2*sin(
4*d*x + 4*c) + 2*b^2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (b^2*cos(4*d*x +
 4*c)^2 + 4*b^2*cos(2*d*x + 2*c)^2 + b^2*sin(4*d*x + 4*c)^2 + 4*b^2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b^2*
sin(2*d*x + 2*c)^2 + 4*b^2*cos(2*d*x + 2*c) + b^2 + 2*(2*b^2*cos(2*d*x + 2*c) + b^2)*cos(4*d*x + 4*c))*log(cos
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 +
 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) + (b^2*cos(4*d*x + 4*c)^2 + 4*b^2*cos(2*d*x + 2*c
)^2 + b^2*sin(4*d*x + 4*c)^2 + 4*b^2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b^2*sin(2*d*x + 2*c)^2 + 4*b^2*cos(
2*d*x + 2*c) + b^2 + 2*(2*b^2*cos(2*d*x + 2*c) + b^2)*cos(4*d*x + 4*c))*log(cos(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c))) + 1) - 4*(b^2*cos(4*d*x + 4*c) + 2*b^2*cos(2*d*x + 2*c) + b^2)*sin(3/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c))) + 4*(b^2*cos(4*d*x + 4*c) + 2*b^2*cos(2*d*x + 2*c) + b^2)*sin(1/2*arctan2(sin(2
*d*x + 2*c), cos(2*d*x + 2*c))))*A*sqrt(b)/(2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 +
 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*co
s(2*d*x + 2*c) + 1))/d

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 242, normalized size = 2.09 \begin {gather*} \left [\frac {A b^{\frac {5}{2}} \cos \left (d x + c\right )^{3} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, {\left (2 \, B b^{2} \cos \left (d x + c\right ) + A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{3}}, -\frac {A \sqrt {-b} b^{2} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{3} - {\left (2 \, B b^{2} \cos \left (d x + c\right ) + A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

[1/4*(A*b^(5/2)*cos(d*x + c)^3*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(
d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*(2*B*b^2*cos(d*x + c) + A*b^2)*sqrt(b*cos(d*x + c))*sqrt(cos(
d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^3), -1/2*(A*sqrt(-b)*b^2*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x
+ c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^3 - (2*B*b^2*cos(d*x + c) + A*b^2)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x
 + c))*sin(d*x + c))/(d*cos(d*x + c)^3)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)/cos(d*x + c)^(11/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,\cos \left (c+d\,x\right )\right )}^{5/2}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^{11/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(11/2),x)

[Out]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(11/2), x)

________________________________________________________________________________________